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OPTIMIZATION OF DYNAMIC PLASTIC DEFORMATION OF PLATES

WITH A COMPLEX CONTOUR

UDC 539.3Yu. V. Nemirovsky and T. P. Romanova

A method for studying dynamic deformation of ideal rigid-plastic plates with a complex contour
on a viscoelastic foundation is proposed. The method allows one to optimize the process of
pulsed forming. The optimization parameters are the amplitude of the pulsed load, viscoelastic
damping coefficients of the foundation, the surface density of the plate material, and the shape
and supporting conditions of the edges. Numerical examples of simply- and doubly-connected
plates are given. It is shown that different combinations of the control parameters of the process
can ensure the same final shape of the plate formed.

In connection with the development and use of pulse methods for metal treatment [1–4], it is of interest
to study the mechanisms of deformation of a blank into an article and determine the dependence of the final
parameters of the article on the shape of the blank and external action.

The process of deformation depends on many factors, in particular, on the properties of the blank
material, the supporting conditions of its boundaries, the properties of the damping foundation, and the
character of dynamic loading. Various shapes of the final deflection of the plate can be obtained by varying
the supporting conditions at its edges for an unchanged distribution of the surface load.

In the present paper, a method of studying dynamic deformation of rigid-plastic plates with a complex
contour on a viscoelastic foundation is proposed. The problem is solved in two stages. In the first stage, the
direct problem is solved: the final deflection of the plate on an arbitrary viscoelastic foundation under pulsed
loading is determined. In the second stage, the inverse problem is solved: for a given final deflection, the
optimal parameters of deformation are found.

We consider an ideal rigid-plastic plate with a complex contour under an arbitrary dynamic pulsed load
of intensity P (t) uniformly distributed over the plate surface. The plate contour may be a circle, a regular
polygon, a regular polygon with rounded corners or a piecewise smooth curve formed from the latter by
changing the relative position of its circular and linear segments, and an irregular polygon into which a circle
can be inscribed. The plate is assumed to be clamped or simply supported. The dynamic behavior of the
above-mentioned plates is similar and studied in detail in [5, 6]. We consider the following doubly-connected
plates: a regular polygonal plate, an annular plate, a regular polygonal plate with rounded corners or a plate
formed from the latter by changing the relative position of circular and linear segments of the contour, and
an irregular polygonal plate with a contour into which a circle can be inscribed. The external and internal
contours of the plate are simply supported or clamped. The dynamic behavior of these doubly-connected
plates is similar [7, 8].

Nemirovsky and Romanova [5–8] derived general equations of motion of the plates. In the present
paper, we study the effect of a viscoelastic foundation on the process of plastic dynamic deformation.

For sufficiently intense loads, the dynamics of plates may be accompanied by the appearance, devel-
opment, and disappearance of a zone of intense plastic deformation Ipl, which moves translationally.
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Fig. 1

1. DIRECT PROBLEM

Simply-Connected Plates. Figure 1 shows a regular polygonal plate with rounded corners (|AO| =
r, |AD| = δr, ∠OBA = ϕ, ∠BOC = ψ, and ∠OAB = π/2, where r is the radius of the circle inscribed into
the polygonal contour or the radius of a circular plate). The values ϕ = π/2 and ψ = 0 refer to circular and
regular polygonal plates, respectively. The equations governing the motion of these plates have the form [5, 6]

δ3(4− 3δ)(α̈+ k2α̇+ k1α) = 2p1δ
2(3− 2δ)−m0, (1.1)

(δα̇)̇ + δ(k2α̇+ k1α) = p1, (1.2)

where p1 = P/r, m0 = M(2 − η) for regular polygonal plates, circular plates, and irregular plates with a
contour into which a circle can be inscribed, m0 = M(cot ϕ + ψ)(2 − η)/(cot ϕ + ψ/ sin2 ϕ) for polygonal
plates with rounded corners, M = 12M0t

2
0/(ρr

3), ρ is the surface mass density of the plate material, M0 is
the limit plastic bending moment, η = 0 for the clamped contour and η = 1 for the simply supported contour,
α is the angle of rotation of the rigid region I about the supporting edge, δ(τ) is a dimensionless function
characterizing the size of the central plastic region Ipl, the dot denotes differentiation with respect to the
parameter τ (τ = t/t0), t is the current time, t0 is the characteristic time, k1 = K0

1 t
2
0/ρ and k2 = K0

2 t
2
0/ρ,

and K0
1 and K0

2 are the coefficients of elastic and viscous resistance of the foundation.
Nemirovsky and Romanova [9] showed that an arbitrary load p1(τ) can be replaced by an equivalent

constant load. By virtue of this inference, we consider, for simplicity, the rectangular loading pulse

p1(τ) = p1 = const, 0 6 τ 6 1, p1(τ) = 0, τ > 1. (1.3)

The initial conditions for α have the form

α(0) = α̇(0) = 0. (1.4)

To determine the quantity δ0 in the initial condition

δ(0) = δ0, (1.5)

it is necessary to solve a supplementary problem considered below. The Cauchy problem (1.1), (1.2), (1.4),
and (1.5) satisfy the existence and uniqueness theorem [10]; therefore, the quantity δ remains constant during
loading: δ(τ) = δ(0) = δ0.

Let p1 > p0
1, where p0

1 = m0/2 is the limit plastic pressure determined in [6]. Then, Eq. (1.2) implies
the equality δ(α̈+ k2α̇+ k1α) = p1. With allowance for this equality, from Eq. (1.1) we obtain

δ2(2− δ) = m0/p1 = 2p0
1/p1. (1.6)
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It follows from (1.6) that δ < 1 for p1 > 2p0
1 and δ > 1 for p1 6 2p0

1. Thus, for the load p1 > 2p0
1 (“high”

loads), the plate motion occurs owing to the presence of a plastic zone and is governed by system (1.1), (1.2)
subject to the initial conditions (1.4) and (1.5), where δ0 is determined from (1.6) and does not depend on
the resistance of the foundation. For the load p0

1 < p1 6 2p0
1 (“moderate” loads), since δ cannot be greater

than unity, the plate motion occurs in the absence of a plastic zone and is governed by Eq. (1.1) for δ = 1
and the initial conditions (1.4). Let us consider both types of loading.

“Moderate ” Load (p0
1 < p1 6 2p0

1). In the first phase (0 6 τ 6 1, p1 = const > 0, and δ ≡ 1), the
motion is described by the equation α̈+ k2α̇+ k1α = 2(p1 − p0

1) subject to the initial conditions (1.4).
The second phase (1 < τ 6 τ1) is the plate motion from the moment the load is removed to the moment

the plate ceases to move. In this case, δ ≡ 1 and p1 = 0, and the behavior of the plate is described by the
equation α̈ + k2α̇ + k1α = −2p0

1 for which the initial conditions α(1) and α̇(1) are determined in the end of
the first phase. The time τ1 is found from the condition α̇(τ1) = 0. The deflections at the point (x, y) are
calculated by the formula w(x, y, τ) = α(τ)d(x, y)/r, where d(x, y) is the distance from the point (x, y) to
the supporting edge I and w = W/r (W is the deflection of the plate). The final deflection at the center of
the plate wf is calculated by the formulas

wf = A−B exp (−k2T )− 2p0
1Tk

−1
2 for k1 = 0, k2 6= 0, (1.7)

where T = − ln [2p0
1/(Bk

2
2)]/k2, A = 2(p0

1/k2 + p1)/k2, and B = 2[p1(exp (k2)− 1) + p0
1]/k2

2;

wf = A exp (λ1T ) +B exp (λ2T )− 2p0
1/k1 for k1 6= 0, k2 6= 4k1, (1.8)

where λ1,2 =
(
−k2 ±

√
k2

2 − 4k1

)/
2, A = 2λ2[−p1 + p0

1 + p1 exp (−λ1)][k1(λ2 − λ1)]−1, B = 2λ1[−p1 + p0
1 +

p1 exp (−λ2)][k1(λ1 − λ2)]−1, and T = ln [−Bλ2/(Aλ1)]/(λ1 − λ2);

wf = (A+BT ) exp (λ3T )− 2p0
1 for k1 6= 0, k2 = 4k1, (1.9)

where λ3 = −k2/2, A = −2(p1 − p0
1), B = 2λ3[p1 − p0

1 + p1 exp (−λ3)], and T = −(Aλ3 +B)/λ3;

wf = A cos (λ4T ) +B sin (λ4T )− 2p0
1/k1 for k1 6= 0, k2 = 0, (1.10)

where λ4 =
√
k1, A = −2(p1 − p0

1 + p1 cosλ4)/k1, B = 2p1 sinλ4/k1, and T = arctan (B/A)/λ4;

wf = p2
1(1− p0

1/p1)/p0
1 for k1 = k2 = 0. (1.11)

“High ” Load (p1 > 2p0
1). In the first phase (0 6 τ 6 1 and p1 = const > 0), the motion is described

by Eq. (1.1) under the initial conditions (1.4) and (1.5), where δ = δ0 is determined from (1.6).
In the second phase (1 < τ 6 τ1 and p1 = 0), the motion is described by the system

δ3(4− 3δ)(α̈+ k2α̇+ k1α) = −2p0
1, (δα̇)̇ + δ(k2α̇+ k1α) = 0, (1.12)

which implies δ̇ = 2p0
1/[α̇δ

2(4−3δ)] > 0. In this phase, the function δ(τ) increases. The time τ1 is determined
from the condition δ(τ1) = 1 and corresponds to the moment when the plastic zone shrinks to a point.

In the third phase (τ1 < τ 6 τ2, p1 = 0, and δ ≡ 1), the motion is described by Eq. (1.1) with δ = 1 up
to the moment the plate ceases to move at the moment τ2, which is determined from the condition α̇(τ2) = 0.

The deflections are determined from the equation ẇ(x, y, τ) = d(x, y)α̇(τ)/r at the points (x, y) ∈ I
and from the equation ẇ(x, y, τ) = δ(τ)α̇(τ) at the points (x, y) ∈ Ipl.

In all phases of motion, except for the second phase for the case of a “high” load, the equations of
motion admit analytical solutions. In the second phase of the “high” load, system (1.12) is reduced to the
form

α̇ = ν, ν̇ = −2p0
1/[δ

3(4− 3δ)]− k2ν − k1α, δ̇ = 2p0
1/[νδ

2(4− 3δ)]

and solved numerically by the Runge–Kutta method.
With the use of the method proposed, the motion of various simply-connected plates in a viscoelastic

medium was studied. The calculation results suggest the following conclusions.
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Fig. 2 Fig. 3

1. Viscoelastic resistance of the medium has no effect on the mechanism of plate motion. The motion
of a plate on a viscoelastic foundation includes the same phases as the motion of a plate without resistance of
the medium [5, 6]. For sufficiently high loads, the dynamics of plates on a viscoelastic foundation, as in the
case without resistance of the medium, is accompanied by the appearance, development, and disappearance
of a zone of intense plastic deformation.

2. Viscoelastic resistance of the medium reduces final deflections and the duration of motion of the
plate and affects substantially the shape of final deflections. Figure 2 shows the curves of final deflections
in the section y = 0 of a square simply supported plate for p1 = 3p0

1 [w̄ = Wr2ρ/(M0t
2
0)]; curve 1 refers to

k1 = k2 = 0, curve 2 to k1 = 0.5 and k2 = 0, and curve 3 to k1 = 3 and k2 = 1.
3. For p1/p

0
1 = const, if p0

1 varies m-fold, the final deflection varies m-fold too. This fact allows one
to use a square simply supported plate as a certain model structure for calculation of all simply-connected
plates under consideration in a damping medium, since the character of supports and the number of edges
influence only the limit plastic pressure.

Doubly-Connected Plates. Figure 3 shows a doubly-connected regular polygonal plate with rounded
corners (|OA1| = r, |A1D1| = δr, |A1D2| = ξr, |A1A2| = λr, ∠OA1B1 = 90◦, ∠OB1A1 = ϕ, and ∠B1OC1 =
ψ). The cases ϕ = π/2 and ψ = 0 correspond to annular and doubly-connected regular polygonal plates,
respectively. The equations that describe the motion of these plates have the form [7, 8]

δα̇1 = (λ− ξ)α̇2; (1.13)

δ3(4− 3δ)(α̈1 + k2α̇1 + k1α1) = 2p1δ
2(3− 2δ)−m1; (1.14)

(λ− ξ)3(4− 3ξ − λ)(α̈2 + k2α̇2 + k1α2) = 2p1(λ− ξ)2(3− 2ξ − λ)−m2; (1.15)

(δα̇1)̇ = p1 − δ(k2α̇1 + k1α1). (1.16)

In the case where Ipl degenerates, Eq. (1.16) is replaced by the condition

δ = ξ. (1.17)

In (1.13)–(1.18), mj = 12M(2 − ηj)(1 − λj) (j = 1, 2) for doubly-connected regular polygonal plates,
annular plates, and irregular plates with a contour into which a circle can be inscribed, mj = 12M(1 −
λj)[cot ϕ(2− ηj) + ψ(2− θj)]/(cot ϕ+ ψ/ sin2 ϕ) (j = 1, 2) for plates with rounded corners, λ1 = 0, λ2 = λ,
M = 12M0t

2
0/(ρr

3), ηj = 0 and θj = 0 for a clamped contour, ηj = 1 and θj = 1 for a simply supported
contour, j = 1 and 2 refer to the external and internal contours, respectively, αj is the angle of rotation of
the rigid region Ij about the supporting edge, λ is a dimensionless quantity characterizing the size of the
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hole in the plate, and δ(τ) and ξ(τ) are dimensionless functions determining the size of the internal plastic
region Ipl.

As in the case of simply-connected plates, we consider a rectangular loading pulse (1.3) for simplicity.
The initial conditions for αi and α̇i have the form

α̇i(0) = αi(0) = 0 (i = 1, 2). (1.18)

To determine the quantities δin and ξin in the initial conditions

δ(0) = δin, ξ(0) = ξin, (1.19)

it is necessary to solve two supplementary problems considered below.
For a constant load, one can integrate system (1.13)–(1.17) assuming that δ and ξ are constant. Since

the Cauchy problem (1.14)–(1.18) satisfies the conditions of the existence and uniqueness theorem [10], the
quantities δ and ξ remain constant during loading: δ = δ(0) = δin and ξ = ξ(0) = ξin.

Let p1 > p0, where p0 is the limit plastic pressure determined in [7, 8]: p0 = m1/[2δ2
0(3 − 2δ0)] and

m1(λ− δ0)2(3− 2δ0 − λ) = m2δ
2
0(3− 2δ0). Then, Eqs. (1.13) and (1.16) imply δ(α̈1 + k2α̇1 + k1α1) = p1 and

(λ− ξ)(α̈2 + k2α̇2 + k1α2) = p1. With allowance for these equalities, from (1.14) and (1.15) we obtain

δ2(2− δ) = m1/p1, (λ− ξ)2(2− λ− ξ) = m2/p1. (1.20)

It follows from (1.20) that ξ > δ∗ > δ for p1 > p∗ and ξ 6 δ for p1 6 p∗, where p∗ and δ∗ are determined
from the equations m1(λ − δ∗)2(2 − δ∗ − λ) = m2δ

2
∗(2 − δ∗) and p∗ = m1/[δ2

∗(2 − δ∗)]. Thus, for the load
p1 > p∗ (“high” load), the plate motion occurs in the presence of a developed plastic zone Ipl and is described
by system (1.13)–(1.16) for the initial conditions (1.18) and (1.19), where ξin and δin are determined from
(1.20). For the load p0 < p1 6 p∗ (“moderate” loads), since δ 6 ξ, the plate motion occurs in the absence of
a plastic zone Ipl and is described by system (1.13)–(1.15), (1.17) for the initial conditions (1.18) and (1.19),
in which ξin = δin. In this case, δin is determined in the following manner. It follows from (1.13) and (1.17)
that δ(α̈1 +k2α̇1 +k1α1) = (λ−ξ)(α̈2 +k2α̇2 +k1α2). From the last equality and (1.14) and (1.15), we obtain
the equation for δin:

2p1δ
2
in(3− 2δin)−m1

δ2
in(4− 3δin)

=
2p1(λ− δ2

in)(3− 2δ2
in − λ)−m2

(λ− δ2
in)(4− 3δin − λ)

. (1.21)

Let us consider both loading cases in more detail.
“Moderate ” Load (p0 < p1 6 p∗). In the first phase (0 6 τ 6 1 and p1 = const > 0), the motion is

described by system (1.14), (1.15), (1.18), (1.19), in which δin is determined from (1.21). The first phase ends
when the load is removed.

In the second phase (1 < τ 6 τ1 and p1 = 0), inertial motion occurs up to the moment τ1 and is
described by system (1.13), (1.17) and

δ3(4− 3δ)(α̈1 + k2α̇1 + k1α1) = −m1, (λ− ξ)3(4− 3ξ − λ)(α̈2 + k2α̇2 + k1α2) = −m2. (1.22)

This system is solved numerically by the Runge–Kutta method. The time τ1 is determined from the condition
α̇i(τ1) = 0 (i = 1, 2). The calculation yields δ̇(τ1) = 0.

“High ” Load (p1 > p∗). In the first phase (0 6 τ 6 1 and p1 = const > 0), the motion is described by
system (1.13), (1.14), where δin and ξin are determined from (1.20). The first phase ends when the load is
removed.

In the second stage (1 < τ 6 τ1 and p1 = 0), the motion is described by system (1.13), (1.22) and
(δα̇1)̇ = −δ(k2α̇1 + k1α̇1), which implies δ̇ = m1/[α̇1δ

2(3− 2δ)] > 0 and ξ̇=−m2/[α̇2(λ− ξ)2(4−3ξ−λ)] < 0.
Thus, the function δ(τ) increases and the function ξ(τ) decreases. The moment τ1 is determined from the
condition δ(τ1) = ξ(τ1), which corresponds to complete shrinkage of the zone Ipl into a linear segment. System
(1.13), (1.22) is solved numerically by the Runge–Kutta method.

The third phase (τ1 < τ 6 τ2) is the motion of the plate up to its halt, which is described by system
(1.13), (1.17), (1.22) solved numerically. The moment τ2 is determined from the condition α̇i(τ2) = 0 (i = 1,
2). The calculations show that δ̇(τ2) = 0.
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Fig. 4

In all the phases, the deflections at the points (x, y) ∈ Ii (i = 1, 2) are calculated by the formula

w(τ) =
di(x, y)

r

τ∫
τk

δ(s)α̇1(s) ds+w(τk), where di(x, y) is the distance from the point (x, y) to the supporting

edge Ii and τk is the time of phase beginning. At the points (x, y) ∈ Ipl, the deflections are determined from
the equation ẇ = δα̇1.

Figure 4 shows the curves of final deflections in the cross section y = 0, which occur in a simply
supported regular polygonal doubly-connected plate with λ = 0.8 in a damping medium (P1 = Pr2/M0)
(curve 1 refers to P1 = 50.55, k1 = 1, and k2 = 5, curve 2 to P1 = 17.7, k1 = 0, and k2 = 0.5, curve 3 to
P1 = 50.55 and k1 = k2 = 0.5, curve 4 to P1 = 90 and k1 = k2 = 0.5, and curve 5 to P1 = 50.55 and
k1 = k2 = 0).

2. INVERSE PROBLEM

As is noted above, viscoelastic resistance substantially influences the shape of final deflections. Varying
the load magnitude and the damping coefficients, one can change the shape of final deflections within a wide
range. The final deflection depends also on the limit pressure p0

1 and, hence, on the shape and supporting
conditions of the plate edges. One can determine the function U that establishes a correspondence between
each set f = (p0

1, p1, k1, k2) and a certain characteristic of the final shape Π: U(f) = Π.
The characteristic Π may include many determining quantities: final deflections at any point of the

plate, slopes of the deformed surface of the plate relative to the horizontal line at the fixed points of the plate,
surface area and filling volume of the deformed plate, etc. For example, if it is necessary to form an article

with a specified filling volume, the characteristic Π should be Π = V , where V =

tf∫
0

∫∫
S

ẇ(τ, s) ds dτ (tf is

the time of plate deformation, S is the surface, and ds is the surface element). If it is required to obtain the
maximum or minimum filling volume, Π is taken to be Π = max V or Π = min V , respectively.

All quantities that enter the characteristic Π are determined by the properties of the article formed.
Varying the set of quantities f , one can obtain different shapes of final deflections.

The inverse problem is formulated as follows: for a given characteristic Π, it is required to find the
quantities f :

f = U−1(Π). (2.1)
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Fig. 5 Fig. 6

Thus, it is possible to control the deformation processes. Namely, for a given characteristic Π, one can
determine the set f that ensures the required shape of the article. These problems are solved numerically
using computers.

The inverse problem (2.1) is solved by the local-variation method [11]. As an example of the solution
of the inverse problem (2.1), we consider the following problem. The limit plastic pressure p0

1 is assumed to
be fixed. The required shape of the deflection is determined by the following three characteristic parameters:
the maximum deflection wmax, the deflection wδ, and the quantity 0 < δc < 1 for simply-connected plates
(Fig. 5) and 0 < δc 6 δ0 < 1 for doubly-connected plates (Fig. 6). The quantity δc is chosen in such a
way that the segment KN in Figs. 5 and 6 is a linear segment. Moreover, if wδ = δcwmax for simply-
connected plates, “moderate” loads are considered and k1 and k2 are determined from Eqs. (1.7)–(1.11).
If δcwmax < wδ 6 wmax, the amplitude of the rectangular loading pulse p1 is uniquely determined for the
quantity δc from Eq. (1.6). The cases wδ > wmax and δcwmax > wδ are not considered, since these shapes of
the final deflection cannot be obtained within the framework of the model used. These cases are shown in
Fig. 5 (deflection shape 1 refers to wδ > wmax, shape 2 to δcwmax > wδ, and shape 3 to wδ = δcwmax). For
doubly-connected plates with δcwmax/λ < wδ 6 wmax, the amplitude p1 is determined from the first equation
in (1.20). Figure 6 shows the final deflections that cannot be obtained within the framework of the model
considered (deflection shape 1 refers to the case wδ > wmax and shape 2 to the case δcwmax/λ < wδ).

It should be noted that, for identical loads, the final deflection determined with allowance for resistance
of the foundation must not exceed the final deflection determined at the same points without allowance for
resistance. This condition can be satisfied by increasing the loading time t0.

The solution of the inverse problem by the local-variation method depends on the initial approxima-
tions [11]; therefore, the solution of problem (2.1) is not unique. The same final deflection can be obtained
for different resistances of the foundation. For example, for a simply supported plate, the values w̄δ = 4.4,
w̄max = 4.4, and δc = 0.72 correspond to the following combinations of parameters: P1 = 18, k1 = 8, and
k2 = 0 and P1 = 18, k1 = 1, and k2 = 3; for a simply supported doubly-connected plate with λ = 0.8, the
values w̄δ = 7, w̄max = 8, and δc = 0.383 correspond to the combinations P1 = 50.59, k1 = 5.9, and k2 = 3
and P1 = 50.59, k1 = 1.8, and k2 = 5.

The nonuniqueness of the solution of the inverse problem (2.1) allows one to choose the parameters of
resistance of the foundation that ensure the required final deflection of the plate.
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